Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15446, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723267

RESUMO

Cyber-attacks are a major problem for users, businesses, and institutions. Classical anomaly detection techniques can detect malicious traffic generated in a cyber-attack by analyzing individual network packets. However, routers that manage large traffic loads can only examine some packets. These devices often use lightweight flow-based protocols to collect network statistics. Analyzing flow data also allows for detecting malicious network traffic. But even gathering flow data has a high computational cost, so routers usually apply a sampling rate to generate flows. This sampling reduces the computational load on routers, but much information is lost. This work aims to demonstrate that malicious traffic can be detected even on flow data collected with a sampling rate of 1 out of 1,000 packets. To do so, we evaluate anomaly-detection-based models using synthetic sampled flow data and actual sampled flow data from RedCAYLE, the Castilla y León regional subnet of the Spanish academic and research network. The results presented show that detection of malicious traffic on sampled flow data is possible using novelty-detection-based models with a high accuracy score and a low false alarm rate.

2.
Sci Rep ; 12(1): 14530, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008528

RESUMO

The use of people recognition techniques has become critical in some areas. For instance, social or assistive robots carry out collaborative tasks in the robotics field. A robot must know who to work with to deal with such tasks. Using biometric patterns may replace identification cards or codes on access control to critical infrastructures. The usage of Red Green Blue Depth (RGBD) cameras is ubiquitous to solve people recognition. However, this sensor has some constraints, such as they demand high computational capabilities, require the users to face the sensor, or do not regard users' privacy. Furthermore, in the COVID-19 pandemic, masks hide a significant portion of the face. In this work, we present BRITTANY, a biometric recognition tool through gait analysis using Laser Imaging Detection and Ranging (LIDAR) data and a Convolutional Neural Network (CNN). A Proof of Concept (PoC) has been carried out in an indoor environment with five users to evaluate BRITTANY. A new CNN architecture is presented, allowing the classification of aggregated occupancy maps that represent the people's gait. This new architecture has been compared with LeNet-5 and AlexNet through the same datasets. The final system reports an accuracy of 88%.


Assuntos
COVID-19 , Análise da Marcha , Biometria/métodos , COVID-19/epidemiologia , Marcha , Humanos , Redes Neurais de Computação , Pandemias
3.
Front Neurorobot ; 12: 85, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30670960

RESUMO

Tracking people has many applications, such as security or safe use of robots. Many onboard systems are based on Laser Imaging Detection and Ranging (LIDAR) sensors. Tracking peoples' legs using only information from a 2D LIDAR scanner in a mobile robot is a challenging problem because many legs can be present in an indoor environment, there are frequent occlusions and self-occlusions, many items in the environment such as table legs or columns could resemble legs as a result of the limited information provided by two-dimensional LIDAR usually mounted at knee height in mobile robots, etc. On the other hand, LIDAR sensors are affordable in terms of the acquisition price and processing requirements. In this article, we describe a tool named PeTra based on an off-line trained full Convolutional Neural Network capable of tracking pairs of legs in a cluttered environment. We describe the characteristics of the system proposed and evaluate its accuracy using a dataset from a public repository. Results show that PeTra provides better accuracy than Leg Detector (LD), the standard solution for Robot Operating System (ROS)-based robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...